25 research outputs found

    An Optimized Spline-Based Registration of a 3D CT to a Set of C-Arm Images

    Get PDF
    We have developed an algorithm for the rigid-body registration of a CT volume to a set of C-arm images. The algorithm uses a gradient-based iterative minimization of a least-squares measure of dissimilarity between the C-arm images and projections of the CT volume. To compute projections, we use a novel method for fast integration of the volume along rays. To improve robustness and speed, we take advantage of a coarse-to-fine processing of the volume/image pyramids. To compute the projections of the volume, the gradient of the dissimilarity measure, and the multiresolution data pyramids, we use a continuous image/volume model based on cubic B-splines, which ensures a high interpolation accuracy and a gradient of the dissimilarity measure that is well defined everywhere. We show the performance of our algorithm on a human spine phantom, where the true alignment is determined using a set of fiducial markers

    Spectral Signal-to-Noise Ratio and Resolution Assessment of 3D Reconstructions

    Get PDF
    Measuring the quality of three-dimensional (3D) reconstructed biological macromolecules by transmission electron microscopy is still an open problem. In this article, we extend the applicability of the spectral signal-to-noise ratio (SSNR) to the evaluation of 3D volumes reconstructed with any reconstruction algorithm. The basis of the method is to measure the consistency between the data and a corresponding set of reprojections computed for the reconstructed 3D map. The idiosyncrasies of the reconstruction algorithm are taken explicitly into account by performing a noise-only reconstruction. This results in the definition of a 3D SSNR which provides an objective indicator of the quality of the 3D reconstruction. Furthermore, the information to build the SSNR can be used to produce a volumetric SSNR (VSSNR). Our method overcomes the need to divide the data set in two. It also provides a direct measure of the performance of the reconstruction algorithm itself; this latter information is typically not available with the standard resolution methods which are primarily focused on reproducibility alone

    On the nature of the Be star HR 7409 (7 Vul)

    Full text link
    HR 7409 (7 Vul) is a newly identified Be star possibly part of the Gould Belt and is the massive component of a 69-day spectroscopic binary. The binary parameters and properties of the Be star measured using high-dispersion spectra obtained at Ondrejov Observatory and at Rozhen Observatory imply the presence of a low mass companion (~ 0.5-0.8 M_sun). If the pair is relatively young (<50-80 Myr), then the companion is a K V star, but, following another, older evolutionary scenario, the companion is a horizontal-branch star or possibly a white dwarf star. In the latter scenario, a past episode of mass transfer from an evolved star onto a less massive dwarf star would be responsible for the peculiar nature of the present-day, fast-rotating Be star.Comment: Accepted for publication in MNRA

    Multiresolution-Based Registration of a Volume to a Set of Its Projections

    No full text
    We have developed an algorithm for the rigid-body registration of a 3D CT to a set of C-arm images by matching them to computed cone-beam projections of the CT (DRRs). We precomputed rescaled versions (pyramid) of the CT volume and of the C-arm images. We perform the registration of the CT to the C-arm images starting from their coarsest resolution until we reach some finer resolution that offers a good compromise between time and accuracy. To achieve precision, we use a cubic-spline data model to compute the data pyramids, the DRRs, and the gradient and the Hessian of the cost function. We validate our algorithm on a 3D CT and on C-arm images of a cadaver spine using fiducial markers. When registering the CT to two C-arm images, our algorithm operates safely if the angle between the two image planes is larger than 10°. It achieves an accuracy of approximately 2.0±1.0 mm

    Versatility of Approximating Single-Particle Electron Microscopy Density Maps Using Pseudoatoms and Approximation-Accuracy Control

    No full text
    Three-dimensional Gaussian functions have been shown useful in representing electron microscopy (EM) density maps for studying macromolecular structure and dynamics. Methods that require setting a desired number of Gaussian functions or a maximum number of iterations may result in suboptimal representations of the structure. An alternative is to set a desired error of approximation of the given EM map and then optimize the number of Gaussian functions to achieve this approximation error. In this article, we review different applications of such an approach that uses spherical Gaussian functions of fixed standard deviation, referred to as pseudoatoms. Some of these applications use EM-map normal mode analysis (NMA) with elastic network model (ENM) (applications such as predicting conformational changes of macromolecular complexes or exploring actual conformational changes by normal-mode-based analysis of experimental data) while some other do not use NMA (denoising of EM density maps). In applications based on NMA and ENM, the advantage of using pseudoatoms in EM-map coarse-grain models is that the ENM springs are easily assigned among neighboring grains thanks to their spherical shape and uniformed size. EM-map denoising based on the map coarse-graining was so far only shown using pseudoatoms as grains

    Multiresolution Spline-Based 3D/2D Registration of CT Volume and C-Arm Images for Computer-Assisted Surgery

    No full text
    We propose an algorithm for aligning a preoperative computed tomography (CT) volume and intraoperative C-arm images, with applications in computer-assisted spinal surgery. Our three-dimensional (3D)/two-dimensional (2D) registration algorithm is based on splines and is tuned to a multiresolution strategy. Its goal is to establish the mutual relations of locations in the real-world scene to locations in the 3D CT and inthe 2D C-arm images. The principle of the solution is to simulate a series of C-arm images, using CT data only. Each numerical simulation of a C-arm image is defined by its pose. Our registration algorithm then adjusts this pose until the given C-arm projections and the simulated projections exhibit the greatest degree of similarity. We show the performance of the algorithm for the experiments in a controlled environment which allows for an objective validation of the quality ofour algorithm. For each of 100 randomly generated disturbances around the optimum solution, the 3D/2D registration algorithm was successful and resulted in image registration with subpixel error

    DOI 10.1155/IJBI/2006/47197 An Optimized Spline-Based Registration of a3DCTtoaSetofC-ArmImages

    No full text
    We have developed an algorithm for the rigid-body registration of a CT volume to a set of C-arm images. The algorithm uses a gradient-based iterative minimization of a least-squares measure of dissimilarity between the C-arm images and projections of the CT volume. To compute projections, we use a novel method for fast integration of the volume along rays. To improve robustness and speed, we take advantage of a coarse-to-fine processing of the volume/image pyramids. To compute the projections of the volume, the gradient of the dissimilarity measure, and the multiresolution data pyramids, we use a continuous image/volume model based on cubic B-splines, which ensures a high interpolation accuracy and a gradient of the dissimilarity measure that is well defined everywhere. We show the performance of our algorithm on a human spine phantom, where the true alignment is determined using a set of fiducial markers. Copyright © 2006 S. Jonić et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1

    Point Similarity Measures Based on MRF Modeling of Difference Images for Spline-Based 2D-3D Rigid Registration of x-Ray Fluoroscopy to CT Images

    No full text
    One of the main factors that affect the accuracy of intensity-based registration of two-dimensional (2D) X-ray fluoroscopy to three-dimensional (3D) CT data is the similarity measure, which is a criterion function that is used in the registration procedure for measuring the quality of image match. This paper presents a unifying framework for rationally deriving point similarity measures based on Markov random field (MRF) modeling of difference images which are obtained by comparing the reference fluoroscopic images with their associated digitally reconstructed radiographs (DRR's). The optimal solution is defined as the maximum a posterior (MAP) estimate of the MRF. Three novel point similarity measures derived from this framework are presented. They are evaluated using a phantom and a human cadaveric specimen. Combining any one of the newly proposed similarity measures with a previously introduced spline-based registration scheme, we develop a fast and accurate registration algorithm. We report their capture ranges, converging speeds, and registration accuracies
    corecore